Bone Nutrients:



Medicine often points the finger to high sodium levels as being contributory to heart disease when in fact the culprit may be low calcium, potassium or magnesium levels. These nutrients work as a team to conduct nerve impulses contract muscles. Bone nutrients must be present concurrently and in adequate amounts to form new bone tissue. 

Potassium, magnesium and calcium levels can be measured in blood serum. However, the calcium blood measurement is not so useful, because when blood calcium is low, the body takes calcium out of bone to raise the blood calcium levels. When bone tissue is broken down in this manner, both calcium and phosphate are released from the bone into the blood stream, thus elevating blood serum levels. This regulation process is important to keep nerves conducting and muscles contracting. However, the reabsorption process weakens bones because it removes calcium, phosphate, minerals plus collagen nutrients. If calcium, phosphate, minerals and collagen nutrients are never replaced in balanced amounts, bone tissue breakdown and eventually osteoporosis results.  Bone pain may result when nutrient levels are low due to damaged bone tissue effectively “stealing” nutrients from neighboring healthy bone tissue.  That neighborly reabsorption could be painful.  Supplying bone tissue with adequate nutrients eliminates the need for healing bone tissue to reabsorb healthy neighboring bone tissue. 

Since blood calcium measurements do not give us an accurate indication of whether calcium levels are being maintained, medicine measures bone calcium levels through density scanning techniques such as DEXA scan. DEXA scan measurements that are between +1 and -1 are considered normal. Measurements between -1 and -2.5 are considered osteopenic (reduced bone mass) and measurements less than -2.5 are considered osteoporosis. More information can be found on http://

Noticeable physical indications of low blood calcium levels include muscle cramps, restless legs and broken bones. Muscles need adequate calcium, sodium, and potassium to contract and relax. Calcium supplements help relax a muscle cramp. This is due to lactic acid build up during exercise. Calcium may bind lactic acid, relaxing the muscle and releasing the cramp. Sparkling water and club soda, given their alkali nature, also help to neutralize the lactic acid relieving a muscle cramp. While massaging and stretching a tight muscle feels good, this may damage the fibers. Muscle relaxation and contraction is best restored when adequate minerals are provided. While a calcium supplement and alkali water, club soda, or sparkling water may be a temporary remedy to relieve muscle cramps or restless legs, a long term dietary and supplement plan will be important to maintain muscle, bone, and nerve health.

Calcium Sources

Because calcium is critical to humans, the bones have been cleverly designed to be the body’s mini storage units for calcium. We maintain these bone storage units and blood calcium levels through food intake and supplementation. Some of the best calcium foods according to WebMD are “cheese, yogurt, milk, sardines, dark leafy greens (spinach, kale, turnips, and collard greens) and orange juice”. You can find specific food calcium and nutrient information on Some of the best calcium supplements contain calcium citrate, calcium phosphate, and magnesium. Many supplements contain calcium carbonate which is lime. Current calcium recommendations range from 1000mg – 1500mg/day. Vitamin D also has an important role in transporting calcium into bone, as does Vitamin K2 and Magnesium.  Be sure to have all of these nutrients in adequate amounts through either dietary or supplemental sources for strong bone formation.  Additionally, the thyroid regulates calcium absorption/replenishment in bones.  Make sure your thyroid is functioning properly.  The adrenals and and hormone levels should be appropriate such that your body system is in homeostasis.  A naturopath might be helpful to assess your body system.


Calcium supplementation is frequently recommended since calcium is the most abundant mineral.  Calcium citrate and phosphate are important supplements, given that they constitute a larger percentage of bone. The remaining portion of bone is composed of collagen. The collagen component of bone is rarely mentioned, yet collagen comprises anywhere from 10-30% of bone. Collagen is a flexible tissue found in young bone, tendons and ligaments. It forms the scaffolding for bone mineral deposition.  Collagen is found throughout the body in tissues, organs, joints, gums and teeth. In addition to calcium citrate and phosphate to make the calcium salts in bone, we need the nutrients to maintain the bone collagen network.  The collagen network is formed by vitamin C and the amino acids lysine, proline and glycine. Collagen fibers can be damaged by injury, repetitive use, stretches or strains when muscles are weak. Collagen can additionally be damaged by our immune system. This is due to the attachment of wheat gluten to collagen fibers throughout the body. Our immune system sees wheat gluten and wheat defense proteins as foreign invaders. This causes the secretion of immune system chemicals at the sight of wheat gluten attachment to collagen (lungs/joints/organs) contributing to asthma, arthritis, and many organ diseases. (More information can be found on (Teeth may be a lysine storage site, and adequate lysine and vitamin C levels may contribute to teeth and gum health.)

In summary, all of the nutrients: calcium citrate, phosphate, magnesium, vitamin D, vitamin C, vitamin K2, lysine, proline and glycine must be present concurrently to build flexible collagen and healthy bone tissue. They can be found in a variety of foods and these supplements are available at nutrition stores.

We discussed calcium’s importance to muscle and nerves, and the body’s brilliant regulation mechanism for calcium such that when blood calcium levels are low, the body removes calcium from bone to maintain the blood calcium levels. As we mentioned, this regulation mechanism is great for maintaining nerve and muscle function, but whether bone strength and density is maintained is not as apparent. A good visual analogy of building strong, nutrient rich bone might be a Corvette production line. All of the parts to build the Corvette must be supplied to build the car. If one part is missing, the technicians and robots build what looks like a car and feels like a car, but may not function like a car. One small part may make a huge difference in that new Corvette. Bones and collagen work the same way. They are composed of many “parts” (calcium citrate, phosphate, magnesium, vitamin D, vitamin K, vitamin C, lysine, glycine, and proline). All nutrients must be supplied in adequate amounts for your body to build elegant bone, tendon and ligaments.

If bone construction parts are missing, the body may build structures that look and feel like bone, tendon and ligaments, but they may not function that way. Bones may break easily and muscles may cramp easily. Restless legs may result. Tendons may tear. Adequate, viable parts produce beautiful, 0 to 60mph in 4 seconds, Corvettes.  Akin to adequate nutrients producing healthy, functional bones, tendons and ligaments.

Why is Calcium Removed from Bone ??

As we discussed, our bodies remove calcium from bone tissue to maintain critical muscle and nerve function. This eloquent measure is designed to maintain our most abundant blood calcium mineral level.  Alas, in osteoporosis, this calcium removal measure is being forced to work overtime. There is a second important reason calcium may be lost from bone. Many of our foods are acidic. The blood is carefully regulated to be around pH of 7.4, this is critical for chemical pathways. Acidic foods would drive the blood pH below 7.4.  Recycled bone calcium contains bicarbonate which acts as a pH buffer in the blood to balance these acidic foods, maintaining the pH. Alkali water, club soda, and sparkling water all bind acid to help maintain this normal blood pH. This process might be somewhat like bath water. If the bath water is too hot, cold water can be mixed with hot water to neutralize it’s effect. Finally, calcium can be removed from bone and excreted when the adrenals are fatigued. Both mental and physical stress, can fatigue the adrenals. Our high consumption of glyphosate laden, modified grains such as wheat gluten fatigues our adrenals. Due to the stress on the adrenal neurotransmitter production system, calcium leaves the body.  This adrenal stress is particularly noticeable during the puberty years when the child’s body needs extra bone nutrients plus extra protein for physical growth and to mentally handle school stress.

Calcium Buildup in Tissues Other than Bone

Often, calcium builds up in tissues other than bone. Calcium buildup is found in breast tissue, kidney stones, gallstones, cysts and many other tissues, where it doesn’t belong. Why? What should we do? Interestingly, calcium buildup in the wrong tissues appears to occur when individuals have insufficient dietary/supplemental calcium intake. Researchers have found that increasing dietary calcium and supplements decreases calcium buildup in the wrong tissues and builds up calcium in the right places such as in bone tissue (Gul and Monga, 2014).

Your curious mind may ask, why is calcium showing up in the wrong tissues when dietary/ supplemental calcium levels are low? We would like to propose a theory to answer this question. We know that when blood calcium levels are low, recycled calcium (and phosphate) being released from bone to raise blood calcium levels. It is likely that the recycled bone calcium is structurally different from the calcium we eat in food and/or supplement, and possibly the recycled calcium from bone cannot be redeposited into bone tissue once blood levels normalize. Perhaps, the body can’t easily excrete excess recycled bone calcium, thus it builds up in tissues where it doesn’t belong. Certainly, releasing calcium from bone, to maintain blood calcium levels, was meant to be a temporary measure, not a long term process.

What is the impact of having recycled calcium delivered to the wrong tissues? “Insufficient intake of dietary calcium (<600mg/day) can increase… the risk of stone formation“, (Gambara, 2016). Gambara confirms that “stone formation is frequently associated with other diseases of affluence such as hypertension, osteoporosis, cardiovascular disease, metabolic syndrome, and insulin resistance.” Research studies such as the 2012 NHANES find “a 70% increase from the 1994 NHANES” in urinary tract stone disease, (Gul and Monga, 2014). Thus, our calcium deficiencies are worsening. These researchers report that “newer research is finding that stones are associated with several serious morbidities”.

Researchers have found that calcium buildup in the form of hydroxyapatite in breast tissue contributes to breast cancer (Cooke, 2003). Let’s repeat this sentence. Calcium build up in breast tissue is involved with breast cancer. One in eight women will have breast cancer. Researchers also recognize that radiation can modify healthy cells and turn them into uncontrollable cancerous cells. Mammograms contain radiation and radiation damage is additive in the body. Researchers have found that citrate and phosphate may have a role in removing hydroxyapatite deposits in breast tissue.  In one research study, women taking phosphate bone density drugs had reduced incidence of breast cancer.

How to Deliver Calcium to Bone

Given this information, how shall we best increase calcium in our bones and decrease calcium tissue deposits and stones?

One common solution, is to take a calcium supplement such as calcium citrate and/or calcium phosphate. Bone is composed of calcium citrate, calcium phosphate, magnesium, vitamin D, vitamin K2, and collagen (vitamin C, lysine, proline, and glycine). It used to be that many calcium supplements were composed of calcium carbonate. Calcium carbonate is lime. Many supplements are now changing ingredients to calcium citrate or calcium phosphate. We need both.

Why calcium citrate? Citrate works in two ways. First, citrate is a buffer. Therefore, when the blood pH is low, citrate will buffer the pH and calcium will not be pulled from bone tissue to normalize pH. Alkali water, club soda or sparking water are alkali drinks that help to increase blood pH. Secondly, calcium citrate is found to combine well with phosphate and collagen components to make bone. Calcium citrate appears to be a key strength component in bone tissue. More information on citrate properties: 2011/06/110608153548.htm. Finally, citrate and phosphate help remove calcium buildup in the wrong tissues: %2C+citrate%2C+phosphate. Researchers found that citrus bioflavonoids and lemon peel inhibit stone formation: This is critical information to the long term prevention calcium build up in the wrong tissues and maybe critical to the long term prevention of breast cancer. Many calcium supplements are now calcium citrate.

Calcium phosphate is the other important component of bone. Calcium citrate and phosphate can be found in supplements. Researchers have found that citrate and phosphate may have a role in removing hydroxyapatite deposits in breast tissue. These deposits found on mammograms may contribute to the formation of breast cancer. In one research study, women taking phosphate bone density drugs had reduced incidence of breast cancer.

The Linus Pauling Institute has found that many other minerals and vitamins are found in bone such as magnesium, fluoride, sodium, vitamin A, D and K. More information can be found on: More individuals than recognized may be deficient in vitamin A, as seen in dry eyes and in vitamin K as seen in nose bleeds. (Caution: vitamin K, found in leafy green vegetables, allows the blood to clot when vessels are damaged. Blood thinners interfere with vitamin Ks ability to clot blood. Ingesting additional vitamin K interferes with blood thinner drugs)

Secondly, drink plenty of fluids to produce at least 2.5L of urine per day (Gul and Monga, 2014). Gul recommends avoiding the colas which are acidic, yet not being quite as concerned with the “citric acid containing sodas, which include most clear soft drinks.” As we learned above, citric acid found in lemons and limes can be beneficial to bone health.

Remember that if you are eating a lot of protein, taking amino acids for brain or sports health, or drinking wine your blood may be more acidic which will pull carbonate from your bones to buffer the pH of your blood. So you may want to increase your calcium citrate or alkali water, club soda, and/or sparkling water consumption to balance these actions.

Finally, stressing your adrenals, the little walnut shaped organs that sit on top of your kidneys, (the adrenals produce neurotransmitters) results in the loss of calcium. Minimizing both mental stress activities and physical stress, often caused by the consumption of manufactured wheat and sugar, will help the adrenals. High glucose (grains, sugars) levels result in high stone levels (Gul and Monga, 2014).

Best Wishes and Blessings Friends and Remember to Exercise!


Cooke MM1, McCarthy GM, Sallis JD, Morgan MP. Phosphocitrate inhibits calcium hydroxyapatite induced mitogenesis and upregulation of matrix metalloproteinase-1, interleukin-1beta and cyclooxygenase-2 mRNA in human breast cancer cell lines. Breast Cancer Res Treat. 2003 May;79(2):253-63.

Gambaro G1, Trinchieri A2., Recent advances in managing and understanding nephrolithiasis/ nephrocalcinosis. F1000Res. 2016 Apr 18;5. pii: F1000 Faculty Rev-695. doi: 10.12688/ f1000research.7126.1. eCollection 2016

Gul Z1, Monga M2., Medical and dietary therapy for kidney stone prevention.
Korean J Urol. 2014 Dec;55(12):775-9. doi: 10.4111/kju.2014.55.12.775. Epub 2014 Nov 28.

Additional Materials:

Citrate helps reduce stone formation:

Chronic alcohol use may weaken bones:

EGCG (epigallocatechin gallate) found in green tea shows promise inhibiting the formation of kidney stones in rats:

Mediterranean/fruit/vegetable diet may protect against stone formation:

Disclaimer: The ERB is a literature research team presenting the findings of other researchers. The ERB is not licensed medical nor dietary clinicians and will not give medical nor dietary advice. Any information presented on this website should not be substituted for the advice of a licensed physician or nutritionist. Users of this website accept the sole responsibility to conduct their own due diligence on topics presented and to consult licensed medical professionals to review their material. We make no warranties or representations on the information presented and should users utilize this research without consulting a professional, they assume all responsibility for their actions and the consequences.


Adrenal Tremor, Parkinson’s Disease and the Wheat Free Diet


This is a Case Study of a 13 y/o boy who was raised on a wheat free diet (WFD) since age 4.  As an infant,  he  experienced monthly ear infections and was placed on prophylactic antibiotic therapy.  His pre-school years were mired with monthly strep throat infections. Occasionally, he had concurrent small red blotches, indicative of rheumatic fever, on his  torso.  A tonsillectomy was recommended by his pediatrician.

He began a WFD at age 4, the strep throat infections ceased …. unless he ingested wheat without antihistamine prophylaxis. Occasionally, he ate a piece of wheat pizza at school without a immediate anti-histamine.  Subsequent strep throat infections would ensue resulting in swollen cervical lymph nodes, a flushed face, swollen, red and pussy tonsils, but no fever.  All infections presented similarly, however not all tested positive for strep.   This condition was treated with antibiotics and resolved in a few days.  (Please see the post on “Keep the Tonsils, Pull the Strep Throat”).

As a pre-schooler,  the boy had wound healing difficulties.  During his middle school years, he experienced anxiety, fatigue, a lack of physical maturation, restless legs, painful joints, middle belly weight, athlete’s foot, and a slightly curved back.

At age 13, he ate two pieces of wheat pizza without antihistamine prophylaxis.  In the days following, his face flushed intensely, cervical lymph nodes swelled, but no fever was present.  His back was painful at the level of his adrenals. He experienced extreme fatigue, his eyes were sensitive to light, and he had a tremor.  The tremor traveled down his spine and caused his fingers to vibrate.  He was started on his standard Azithromycin antibiotic therapy. However, the condition did not resolve.

Within a couple days he “crashed“.  He had sufficient energy to be active for a couple of hours in the morning and then he lived on the couch for the remainder of the day.  He headed for bed shortly after dinner. Any form of stress intensified the tremor including homework or attending school.  He was started on a second antibiotic.

Differentials considered included infection, PANDAS, serotonin syndrome, and depression.  Medical personnel questioned whether he was avoiding school.  Blood panels were negative.  EEG was negative.  He was prescribed Zoloft to control the tremor.  This drug made him sick and was discontinued.

One month later, a naturopathic physician identified the boy’s flushed face as being caused by adrenal problems.  Through intracellular saliva testing, he was found to be adrenal insufficient.  The flashlight adrenal insufficiency test was positive.  To support his adrenals he began began a supplemental therapy of vitamin C (1000mg/day), B complex (200mg/day), adrenal cortical extract, minerals, vitamin A, CoQ10, vitamin E, spirulina, quercetin, a probiotic, 1g/day of omega-3 fish oil (DHA+EPA) and 1000mg/day of calcium citrate.  His energy levels gradually improved but the tremor continued.

Sugar, high fructose corn syrup, caffeinated drinks, and deep fried, greasy foods harmful to his adrenals were removed from his diet.  The high levels of fruit juice previously consumed were replaced with low, no sugar, or sugar substitute  juices.

It was determined that wheat contains methionine, lysine and threonine.  Methionine controls the hypophyseal-pituitary-adrenal (HPA) axis and is involved with cardiac rhythm.   Lysine is found in collagen thus supports wound heading and dental pulp formation. Threonine supports tooth enamel formation. Hypothesizing that the patient was deficient in these amino acids due to his WFD,  he was started on 1500mg/day of methionine and 1000mg/day of lysine. The boy craved red meat and eggs.  His diet was modified to include methionine containing foods such as brown rice, oranges, additional red meat, eggs, nuts, spinach, onions, peas, yogurt, and popcorn.  Within a week, the boy had regained sufficient energy to work on small hobbies.

Within a month, he began to experience some quick, sharp chest pain.  Methionine is stored in the heart.  The methionine dosage was reduced to 1,000mg/day.  Although he had more energy and felt better, the facial flushing, swollen lymph glands, fatigue, back adrenal pain, and tremor continued.

A urine amino acid profile showed the boy’s methionine level (with supplementation) in low normal range.  Also in low normal range were phosphoserine, taurine, phosphoethanolamine, aspartic acid, hydroxyproline, serine, asparagine, alanine, tryptophan, carnosine, and anserine.   Some success has been found with taurine in relieving tremor.  He was given a trial of 1000mg/day of taurine.  His energy levels increased, however evening doses made it difficult to sleep and there was no improvement in the tremor.

Repeat urine and blood amino acid profiles showed phosphoserine as the only amino acid below normal range.  The patient was supplemented with 1,000mg/day of serine.  One week post therapy, he developed a skin rash on his arms and legs.  Serine therapy was discontinued then reduced to 500mg/twice each week.  The tremor persisted.

Next, the physiological function of each of these amino acids was addressed in relation to the patient’s signs/symptoms.  Proline was found to be a critical component of cartilage and important to joint structure.  Proline works with vitamin C in this capacity and can be synthesized by glutamic acid.  Arginine was important in wound healing, the production and release of growth hormone, insulin, and glucagon release, collagen synthesis, and GABA production. Arginine can be produced from glutamic acid or proline.  Glycine was critical to GABA neurotransmitter and energy production. GABA was important to inhibitory nerve function. Tyrosine was important to the production of neurotransmitters dopamine, norepinephrine, epinephrine, and melanin.  This patient’s grandfather had Parkinson’s Disease which involves low neurotransmitter levels in the Tyrosine – Dopamine Pathway.

Hypothesizing that the boy’s current amino acid levels may not be sufficient for the age dependent physical growth, adrenal stress due to methionine deficiency, and adrenal stress due to the wheat hypersensitivity reaction, this patient was additionally supplemented with 1500mg/day glutamine,  1500mg/day glycine, and 1000 mg/day tyrosine.  After one week of therapy,  the tremor was alleviated and would resume only  under stressful conditions.

After several months, the individual dosages of amino acids were replaced with a 750mg amino acid complex capsule, three times each day. The patient continued to improve.  This complex differed from ingesting protein rich foods in that all 20 amino acids were given concurrently through the complex.  All 20 amino acids must be present concurrently for  protein synthesis to occur.  Supplementation of the 20 amino acid complex relieved the tremor whereas his protein rich diet did not.

The patient returned to school six months post amino acid therapy initiation with improved physical activity levels, reduced anxiety, and alleviation of restless legs.  The daily tremor was absent except under stressful conditions.  His night time activities were kept to a minimum to ensure sufficient rest.

In subsequent years, he remained on 1500 mg/day amino acid complex, 1 gram of DHA+EPA omega-3 fish oil, B complex 100mg/day, vitamin C 1000mg/day, bovine adrenal cortex 340 mg/day, calcium 1000mg/day,  lysine 500mg/day, choline 500mg/day, 5-HTP 100mg/day, probiotic, and minerals.  It appeared that minimal amounts of these supplements are required to maintain good health.

Six years post presentation, this patient continues with occasional stress and fatigue. This is typically visible as facial flushing on the outer periphery of his cheeks.  The tremor has been alleviated under normal and stress conditions.  This patient continues on a WFD and ingests no wheat.  He ingests minimal sugar and deep fried foods, and no caffeine.  Accidental wheat ingestion receives immediate antihistamine and aspirin prophylaxis. The patient is careful to obtain sufficient rest, take supplements, and eat healthy food.  His back continues to be hunched causing him back, neck, and knee pain, but is otherwise most healthy.


Copyright © 2013.  All rights reserved.

Photograph: 8 week old dobie pup

Disclaimer:  The ERB is a literature research team presenting the findings of other researchers. The ERB is not licensed medical nor dietary clinicians and will not give medical nor dietary advice.   Any information presented on this website should not be substituted for the advice of a licensed physician or nutritionist.  Users of this website accept the sole responsibility to conduct their own due diligence on topics presented and to consult licensed medical professionals to review their material.  We make no warranties or representations on the information presented and should users utilize this research without consulting a professional, they assume all responsibility for their actions and the consequences.